Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biophys Rep ; 10(1): 15-21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38737474

RESUMO

Tumor metastasis, responsible for approximately 90% of cancer-associated mortality, remains poorly understood. Here in this study, we employed a melanoma lung metastasis model to screen for metastasis-related genes. By sequential tail vein injection of mouse melanoma B16F10 cells and the subsequently derived cells from lung metastasis into BALB/c mice, we successfully obtained highly metastatic B16F15 cells after five rounds of in vivo screening. RNA-sequencing analysis of B16F15 and B16F10 cells revealed a number of differentially expressed genes, some of these genes have previously been associated with tumor metastasis while others are novel discoveries. The identification of these metastasis-related genes not only improves our understanding of the metastasis mechanisms, but also provides potential diagnostic biomarkers and therapeutic targets for metastatic melanoma.

2.
Heliyon ; 10(1): e23498, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38223729

RESUMO

The high expression of programmed death 1 (PD-1) is a hallmark of T cell exhaustion, consequently inhibiting the anti-tumor immunity, tumor-associated macrophages (TAMs) aggravate Osteosarcoma (OS) progression. However, PD-1 expression on TAMs in OS metastasis remains unclear. Here, we used scRNA-Seq of 15500 individual cells from human OS lung metastatic lesion, identified thirteen major cell clusters. Our data revealed that tumor-infiltrating lymphocytes (TILs) OS lung metastatic accompanied by accumulation of exhausted T cells and regulatory T cells (Tregs). CD3+ T cells from human OS lung metastatic exhibited lower proliferation than in primary tissue. Importantly, TAMs mainly comprise immunosuppressive M2 phenotype in OS metastasis. Mechanistically, we found that PD-1 of TAMs inhibits the phagocytic potency, further promoting the progression of OS metastasis. Therefore, the study provides a strong technical support for OS immunotherapy based on PD-1 inhibitors.

3.
Biochem Genet ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273153

RESUMO

Non-small-cell lung cancer (NSCLC) stands as a prevalent subtype of lung cancer, with circular RNAs emerging as key players in cancer development. This study elucidates the role of circRNA-CPA4 in NSCLC. Elevated circRNA-CPA4 expression in NSCLC lines was confirmed through qRT-PCR. Silencing circRNA-CPA4 with shRNA revealed, through CCK-8, colony formation, and flow cytometry assays, a notable constraint on proliferation and promotion of apoptosis in NSCLC cells. Subcellular localization analysis, RNA immunoprecipitation, and expression level assessments were employed to decipher the intricate interplay among miR-1183, circRNA-CPA4, and PDPK1. Results demonstrated heightened circRNA-CPA4 levels in NSCLC, and its knockdown curtailed NSCLC growth in vivo. Acting as a molecular sponge for miR-1183, circRNA-CPA4 regulated PDPK1 expression. Conversely, inhibiting miR-1183 counteracted the impact of circRNA-CPA4 silencing, reinstating NSCLC cell proliferation, and impeding apoptosis. Overall, this study unveils a novel mechanism: circRNA-CPA4 promotes PDPK1 expression by sequestering miR-1183, fostering NSCLC cell proliferation, and hindering apoptosis.

4.
Clin Respir J ; 18(1): e13726, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118458

RESUMO

In minimally invasive thoracoscopic surgery, for solitary pulmonary nodules (SPNs) far from the pleura, it is difficult to resected by only relying on imaging data, and effective preoperative localization can significantly improve the success rate of surgery. Therefore, preoperative localization is particularly important for accurate resection. Here, we compare the value of a novel Lung-pro-guided localization technique with Hook-wire localization in video-assisted thoracoscopic surgery. METHOD: In this study, 70 patients who underwent CT-guided Hook-wire localization and Lung-pro guided surgical marker localization before VATS-based SPNs resection between May 2020 and March 2021 were analyzed, and the clinical efficacy and complication rate of the two groups were compared. RESULT: Thirty-five patients underwent Lung-pro guided surgical marker localization, and 35 patients underwent CT-guided Hook-wire localization. The localization success rates were 94.3% and 88.6%, respectively (p = 0.673). Compared with the puncture group, the locating time in the Lung-pro group was significantly shorter (p = 0.000), and the wedge resection time was slightly shorter than that in the puncture group (P = 0.035). There were no significant differences in the success rate of localization, localization complications, intraoperative blood loss, postoperative hospital stay, and the number of staplers used. CONCLUSION: The above studies show that the Lung-pro guided surgical marker localization and the CT-guided Hook-wire localization have shown good safety and effectiveness. However, the Lung-pro guided surgical marker localization may show more safety than the Hook-wire and can improve the patient's perioperative experience.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Estudos Retrospectivos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/cirurgia , Resultado do Tratamento , Cirurgia Torácica Vídeoassistida/efeitos adversos , Cirurgia Torácica Vídeoassistida/métodos
5.
J Thorac Dis ; 15(11): 6205-6227, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38090291

RESUMO

Background: Lung cancer is the most common malignant tumor in the world, and its prognosis is still not optimistic. The aim of this study was to establish an immune-related gene (IRG) prognostic index (IRGPI) for lung adenocarcinoma (LUAD) based on IRGs, and to explore the prognosis, molecular and immune features, and response to immune checkpoint inhibitor (ICI) therapy in IRGPI-classified different subgroups of LUAD. Methods: Based on the LUAD transcriptome RNA-sequencing data in TCGA database, the differentially expressed genes (DEGs) were selected. Subsequently, DEGs were intersected with IRGs to obtain differentially expressed immune-related genes (DEIRGs). Weighted gene co-expression network analysis (WGCNA) identified hub genes in DEIRGs. Finally, univariate and multivariate Cox regression analyses were used to build an IRGPI model. Subsequently, TCGA patients were divided into high- and low-risk groups, and the survival of patients in different groups was further analyzed. Besides, we validated the molecular and immune characteristics, relationship with immune checkpoints, angiogenesis-related genes, and immune subtypes distribution in different subgroups. Meanwhile, we further validated the response to ICI therapy in different subgroups. Results: The IRGPI was constructed based on 13 DEIRGs. Compared with the low-risk group, overall survival (OS) was lower in the high-risk group, and the high-risk score was independently associated with poorer OS. Besides, the high-risk score was associated with cell cycle pathway, high mutation rate of TP53 and KRAS, high infiltration of M0 macrophages, and immunosuppressive state, and these patients had poorer prognosis but the TIDE score of the high-risk group was lower than that of the other group, which means that the high-risk group could benefit more from ICI treatment. In contrast, the low-risk score was related to low mutation rate of TP53 and KRAS, high infiltration of plasma cells, and immunoactive state, and these patients had better prognosis but the low-risk group less benefit from ICI treatment based on the results of TIDE score. Conclusions: IRGPI is a prospective biomarker based on IRGs that can distinguish high- and low-risk groups to predict patient prognosis, help characterize the tumor immune microenvironment, and evaluate the benefit of ICI therapy in LUAD.

6.
BMC Cancer ; 23(1): 1141, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001428

RESUMO

OBJECTIVE: Lung adenocarcinoma (LA) is one of the most common malignancies and is responsible for the greatest number of tumor-related deaths. Our research aimed to explore the molecular subtype signatures of LA to clarify the correlation among the immune microenvironment, clinical outcomes, and therapeutic response. METHODS: The LA immune cell marker genes (LICMGs) identified by single-cell RNA sequencing (scRNA-seq) analysis were used to discriminate the molecular subtypes and homologous immune and metabolic traits of GSE72094 LA cases. In addition, the model-building genes were identified from 1441 LICMGs by Cox-regression analysis, and a LA immune difference score (LIDscore) was developed to quantify individual differences in each patient, thereby predicting prognosis and susceptibility to immunotherapy and chemotherapy of LA patients. RESULTS: Patients of the GSE72094 cohort were divided into two distinct molecular subtypes based on LICMGs: immune activating subtype (Cluster-C1) and metabolically activating subtype (cluster-C2). The two molecular subtypes have distinct characteristics regarding prognosis, clinicopathology, genomics, immune microenvironment, and response to immunotherapy. Among the LICMGs, LGR4, GOLM1, CYP24A1, SFTPB, COL1A1, HLA-DQA1, MS4A7, PPARG, and IL7R were enrolled to construct a LIDscore model. Low-LIDscore patients had a higher survival rate due to abundant immune cell infiltration, activated immunity, and lower genetic variation, but probably the higher levels of Treg cells in the immune microenvironment lead to immune cell dysfunction and promote tumor immune escape, thus decreasing the responsiveness to immunotherapy compared with that of the high-LIDscore patients. Overall, high-LIDscore patients had a higher responsiveness to immunotherapy and a higher sensitivity to chemotherapy than the low-LIDscore group. CONCLUSIONS: Molecular subtypes based on LICMGs provided a promising strategy for predicting patient prognosis, biological characteristics, and immune microenvironment features. In addition, they helped identify the patients most likely to benefit from immunotherapy and chemotherapy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Genes Reguladores , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Fenótipo , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética , Proteínas de Membrana
7.
Zhongguo Fei Ai Za Zhi ; 26(10): 774-781, 2023 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-37989340

RESUMO

Lung cancer associated with cystic airspaces (LCCA) is a type of lung cancer characterized by the presence of cystic cavities in or around the tumor on imaging. Due to its high potential for misdiagnosis or underdiagnosis, the prognosis of LCCA patients is poor, necessitating further large-scale clinical studies to elucidate its characteristics. Currently, four imaging classification systems exist, and there has been a progressive increase in attention towards LCCA, particularly with regard to the study of its imaging features. The results indicate a correlation between the pathological features and imaging findings of LCCA; however, research on driver gene mutations and molecular subtyping associated with lung cancer remains insufficient. Due to the challenges associated with early diagnosis and the poorer prognosis compared to general types of lung cancer, this paper comprehensively reviews the research progress on LCCA, including its definition, etiology, pathogenesis, imaging features, histological and pathological features, treatment, and prognosis, aiming to serve as a valuable resource for clinical decision-making.
.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Tomografia Computadorizada por Raios X/métodos , Prognóstico
8.
Quant Imaging Med Surg ; 13(5): 2989-3000, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37179911

RESUMO

Background: The preoperative differentiation between benign parotid gland tumors (BPGTs) and malignant parotid gland tumors (MPGTs) is of great significance for therapeutic decision-making. Deep learning (DL), an artificial intelligence algorithm based on neural networks, can help overcome inconsistencies in conventional ultrasonic (CUS) examination outcomes. Therefore, as an auxiliary diagnostic tool, DL can support accurate diagnosis using massive ultrasonic (US) images. This current study developed and validated a DL-based US diagnosis for the preoperative differentiation of BPGT from MPGT. Methods: A total of 266 patients, including 178 patients with BPGT and 88 patients with MPGT, were consecutively identified from a pathology database and enrolled in this study. Ultimately, considering the limitations of the DL model, 173 patients were selected from the 266 patients and divided into 2 groups: a training set, and a testing set. US images of the 173 patients were used to construct the training set (including 66 benign and 66 malignant PGTs) and testing set (consisting of 21 benign and 20 malignant PGTs). These were then preprocessed by normalizing the grayscale of each image and reducing noise. Processed images were imported into the DL model, which was then trained to predict the images from the testing set and evaluated for performance. Based on the training and validation datasets, the diagnostic performance of the 3 models was assessed and verified using receiver operating characteristic (ROC) curves. Ultimately, before and after combining the clinical data, we compared the area under the curve (AUC) and diagnostic accuracy of the DL model with the opinions of trained radiologists to evaluate the application value of the DL model in US diagnosis. Results: The DL model showed a significantly higher AUC value compared to doctor 1 + clinical data, doctor 2 + clinical data, and doctor 3 + clinical data (AUC =0.9583 vs. 0.6250, 0.7250, and 0.8025 respectively; all P<0.05). In addition, the sensitivity of the DL model was higher than the sensitivities of the doctors combined with clinical data (97.2% vs. 65%, 80%, and 90% for doctor 1 + clinical data, doctor 2 + clinical data, and doctor 3 + clinical data, respectively; all P<0.05). Conclusions: The DL-based US imaging diagnostic model has excellent performance in differentiating BPGT from MPGT, supporting its value as a diagnostic tool for the clinical decision-making process.

9.
In Vivo ; 37(2): 661-666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881067

RESUMO

BACKGROUND/AIM: Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and a major cause of blindness in working-age adults. Diosgenin (DG), a natural steroidal sapogenin extracted from fenugreek seeds and wild yam roots, has hypolipidemic, hypoglycemic, anticancer, and anti-inflammatory properties. Given its pharmacological effects, we speculated that DG may be a promising treatment for DR. Therefore, this study was aimed at evaluating the effectiveness of DG in preventing or slowing DR progression in a mouse model (+Leprdb/+Leprdb strain) of type 2 diabetes (T2D). MATERIALS AND METHODS: DG (5.0 mg/kg body weight) or phosphate-buffered saline (PBS) was administered to 8-week-old T2D mice via oral gavage daily for 24 weeks. Paraffin-embedded eye tissues from the mice were collected and stained with hematoxylin and eosin to evaluate retinal histopathology. Apoptosis-related proteins BCL2-associated X (Bax), B-cell lymphoma 2 (Bcl-2), and cleaved caspase-3 were evaluated by western blotting of mouse retinas. RESULTS: Body weight was slightly reduced in the DG-treated group; however, glucose levels were not markedly different between the DG- and PBS-treated groups. Total retinal thickness, thickness of the photoreceptor and outer nuclear layers, and loss of ganglion cells significantly improved in the retina of the DG-treated T2D mice compared with those in the PBS-treated T2D mice. Cleaved caspase-3 level significantly decreased in the retina of the DG-treated T2D mice. Conclusion: DG alleviates DR pathology and exerts a protective effect on the T2D mouse retina. The inhibitory effects of DG on DR may involve mechanisms of the anti-apoptotic pathway.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Diosgenina , Sapogeninas , Animais , Camundongos , Retinopatia Diabética/etiologia , Retinopatia Diabética/genética , Caspase 3 , Sapogeninas/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Peso Corporal , Diosgenina/farmacologia
10.
Front Immunol ; 14: 1012166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926333

RESUMO

Background: China's southwestern region, Qujing, harbors a high incidence of non-small cell lung cancer (NSCLC) and related mortality. This study was designed to reveal the impact of an immune-related prognostic signature (IRPS) on advanced NSCLC in the Qujing. Methods: Tissue specimens from an independent cohort of 37 patients with advanced NSCLC were retrospectively evaluated to determine the relationship between the IRPS estimated by next-generation sequencing (NGS) and clinical outcome. To compare the IRPS in tissue and the clinical outcomes between Qujing and non-Qujing populations, we analyzed datasets of 23 patients with advanced NSCLC from The Cancer Genome Atlas (TCGA) database. In addition, an independent cohort (n=111) of blood specimens was retrospectively analyzed to determine the relationship between the IRPS and clinical outcome. Finally, we evaluated the utility of the blood IRPS in classifying 24 patients with advanced NSCLC who might benefit from immunotherapy. Results: In cohort 1, the Qujing population with tTMB-H (≥ 10 mutations/Mb) or KRAS mutations had shorter progression-free survival (PFS) (hazard ratio [HR] 0.37, 0.14 to 0.97, P = 0.04; HR 0.23, 0.08 to 0.66, P < 0.01) and overall survival (OS) (HR 0.05, 0.01 to 0.35, P < 0.01; HR 0.22, 0.07 to 0.66, P < 0.01). In cohort 2 of the Qujing population, bTMB-H (≥ 6 mutations per Mb) and KRAS mutations were related to PFS (HR 0.59, 0.36 to 0.99, P = 0.04; HR 0.50, 0.26 to 0.98, P = 0.04) and OS (HR 0.58, 0.35 to 0.96, P = 0.03; HR 0.48, 0.25 to 0.93, P = 0.03). Notably, the Qujing population with bTMB-H had superior PFS (HR 0.32, 0.09 to 1.09, P = 0.01), OS (HR 0.33, 0.10 to 1.13, P < 0.01) and objective response rates (ORRs) (83.3% vs. 14.3% vs. 20.0%, P <0.01) to immunotherapy than other populations. Conclusions: These findings show that tTMB, bTMB and KRAS mutations appear to be independent validated IRPSs that predict the clinical outcomes of Qujing populations with advanced NSCLC and that bTMB may be used as a reliable IRPS to predict the clinical benefit from anti-PD-1 therapies among populations from Qujing with advanced NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Estudos Retrospectivos , Proteínas Proto-Oncogênicas p21(ras)/genética , Biomarcadores Tumorais/genética
11.
Drug Deliv ; 30(1): 2162156, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36600637

RESUMO

In order to precisely deliver celastrol into mitochondria of tumor cells, improve antitumor efficacy of celastrol and overcome its troublesome problems in clinical application, a novel multistage-targeted celastrol delivery system (C-TL/HA) was developed via electrostatic binding of hyaluronic acid (HA) to celastrol-loaded cationic liposomes composed of natural soybean phosphatidylcholine and cholesterol modified with mitochondrial targeting molecular TPP. Study results in this article showed that C-TL/HA successfully transported celastrol into mitochondria, effectively activated apoptosis of mitochondrial pathway, exerted higher tumor inhibition efficiency and lower toxic side effects compared with free celastrol. More importantly, HA coating not only enabled this delivery system to have good stability and safety in vivo, but also increased drug uptake and facilitated tumor targeting through recognizing CD44 receptors rich on the surface of tumor cells. Conclusively, this HA-coated mitochondrial targeting liposomes may provide a prospect for the clinical application of celastrol in tumor therapy.


Assuntos
Ácido Hialurônico , Lipossomos , Lipossomos/química , Ácido Hialurônico/química , Triterpenos Pentacíclicos/farmacologia , Mitocôndrias , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
12.
Cells ; 11(20)2022 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-36291120

RESUMO

Daphnoretin extracted from the stem and roots of Wikstroemia indica (L.) C.A. Mey has been shown to possess antiviral and antitumor activities. Herein, we hypothesized that daphnoretin might induce megakaryocytic differentiation, thereby inhibiting the proliferation of cells and serving as a differentiation therapy agent for chronic myeloid leukemia (CML). Daphnoretin-treated K562 and HEL cells were examined for growth inhibition, cell morphology, and megakaryocyte-specific markers. Potential mechanisms of megakaryocytic differentiation of daphnoretin-treated K562 cells were evaluated. The results showed that daphnoretin inhibited the growth of K562 and HEL cells in a dose- and time-dependent manner. Flow cytometry analyses revealed that daphnoretin treatment slightly increased the proportion of sub-G1 and polyploid cells compared to that of dimethyl sulfoxide (DMSO)-treated control cells. Morphological examination showed that daphnoretin-treated K562 and HEL cells exhibited enlarged contours and multinucleation as megakaryocytic characteristics compared to DMSO-treated control cells. Daphnoretin treatment also dramatically enhanced the expression of megakaryocytic markers CD61 and CD41. Under optimal megakaryocytic differentiation conditions, daphnoretin increased the phosphorylation of STAT3 but not STAT5. In summary, daphnoretin inhibited cell growth and induced megakaryocytic differentiation in K562 and HEL cells. The efficacy of daphnoretin in vivo and in patients with CML may need further investigations for validation.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Dimetil Sulfóxido/farmacologia , Diferenciação Celular , Leucemia Mieloide/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Antivirais/farmacologia
13.
Front Immunol ; 13: 871661, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911706

RESUMO

Different from surgery, chemical therapy, radio-therapy and target therapy, Chimeric antigen receptor-modified T (CAR-T) cells, a novel adoptive immunotherapy strategy, have been used successfully against both hematological tumors and solid tumors. Although several problems have reduced engineered CAR-T cell therapeutic outcomes in clinical trials for the treatment of thoracic malignancies, including the lack of specific antigens, an immunosuppressive tumor microenvironment, a low level of CAR-T cell infiltration into tumor tissues, off-target toxicity, and other safety issues, CAR-T cell treatment is still full of bright future. In this review, we outline the basic structure and characteristics of CAR-T cells among different period, summarize the common tumor-associated antigens in clinical trials of CAR-T cell therapy for thoracic malignancies, and point out the current challenges and new strategies, aiming to provide new ideas and approaches for preclinical experiments and clinical trials of CAR-T cell therapy for thoracic malignancies.


Assuntos
Receptores de Antígenos Quiméricos , Neoplasias Torácicas , Humanos , Imunoterapia , Imunoterapia Adotiva/efeitos adversos , Linfócitos T , Neoplasias Torácicas/tratamento farmacológico , Microambiente Tumoral
14.
Cell Death Dis ; 13(5): 425, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501353

RESUMO

The purpose of the current study was to define the role of MAX interactor 1 (Mxi1) in the pathogenesis of lung cancer and its underlying molecular mechanism. Bioinformatics analysis was performed to identify important regulatory pathway related to lung cancer. Dual luciferase reporter and ChIP assays were adopted to validate the interaction among Mxi1, miR-300 and KLF9. Loss- and gain-of-function studies were conducted to determine the roles of Mxi1, miR-300, and KLF9 in cell proliferation, migration, and invasion in vitro and their effects on myeloid-derived suppressor cell (MDSC) recruitment in vivo. Mxi1 was poorly expressed in lung cancer tissues and cells and its poor expression was associated with poor prognosis. Mxi1 inhibited miR-300 by suppressing its transcription. miR-300 suppressed the expression of KLF9, and KLF9 negatively regulated GADD34 expression in lung cancer cells. Mxi1 or KLF9 elevation or miR-300 repression inhibited lung cancer cell proliferation, as evidenced by reduced Ki67 and PCNA expression, and lowered invasion and migration. In vivo findings revealed that silencing KLF9 induced tumor growth by enhancing MDSC-mediated immunosuppression through upregulation of GADD34. Collectively, these findings suggest that Mxi1 can inhibit lung cancer progression by regulating the miR-300/KLF9 axis and GADD34-mediated immunosuppression.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Supressoras de Tumor/metabolismo
15.
Thorac Cancer ; 13(7): 889-899, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35289077

RESUMO

Lung cancer is the highest incidence and mortality of all cancers around the world. In the present immunotherapy era, an increasing number of immunotherapeutic agents including monoclonal antibody-targeted drugs have been used in the clinical treatment of malignancy, but it still has many limitations. Chimeric antigen receptor-modified T (CAR-T) cells, a novel adoptive immunotherapy strategy, have not only been used successfully against hematological tumors, but have also opened up new avenues for immunotherapy of solid tumors, including lung cancer. However, targeting lung cancer-specific antigens using engineered CAR-T cells is complicated by the lack of proper tumor-specific antigens, an immunosuppressive tumor microenvironment, a low level of CAR-T cell infiltration into tumor tissues, along with off-target effect, etc. Simultaneously, the clinical application of CAR-T cells remains limited because of many challenges such as tumor lysis syndrome, neurotoxicity syndrome, and cytokine release syndrome. In this review, we outline the basic structure and generation characteristic of CAR-T cells and summarize the common tumor-associated antigens in clinical trials of CAR-T cell therapy for lung cancer, and point out the current challenges and new strategies, aiming to provide new ideas and approaches for the pre-clinical experiments and clinical trials of CAR-T cell therapy in lung cancer.


Assuntos
Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Imunoterapia Adotiva , Neoplasias Pulmonares/terapia , Linfócitos T , Microambiente Tumoral
16.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 35(10): 1328-1335, 2021 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-34651489

RESUMO

OBJECTIVE: To study the effect of intercellular adhesion (ica) operon of Staphylococcus epidermidis on the inflammation associated with mixed biofilm of Staphylococcus epidermidis and Candida albicans on endotracheal tube material in rabbits. METHODS: The standard strains of Staphylococcus epidermidis RP62A (ica operon positive, positive group) and ATCC12228 (ica operon negative, negative group) were taken to prepare a bacterial solution with a concentration of 1×10 6 CFU/mL, respectively. Then, the two bacterial solutions were mixed with the standard strain of Candida albicans ATCC10231 of the same concentration to prepare a mixed culture solution at a ratio of 1∶1, respectively. The mixed culture solution was incubated with endotracheal tube material for 24 hours. The formation of mixed biofilm on the surface of the material was observed by scanning electron microscope. Thirty New Zealand rabbits, aged 4-6 months, were divided into two groups ( n=15), and the endotracheal tube materials of the positive group and the negative group that were incubated for 24 hours were implanted beside the trachea. The body mass of rabbits in the two groups was measured before operation and at 1, 3, and 7 days after operation. At 1, 3, and 7 days after operation, the levels of interleukin 1ß (IL-1ß), IL-6, tumor necrosis factor α (TNF-α), and monocytechemotactic protein 1 (MCP-1) were detected by using an ELISA test kit. At 7 days after operation, the formation of mixed biofilm on the surface of the endotracheal tube materials was observed by scanning electron microscope, the inflammation and infiltration of tissues around the materials were observed by HE staining, and the bacterial infections in heart, lung, liver, and kidney were observed by plate colony counting method. RESULTS: Scanning electron microscope observation showed that the mixed biofilm structure was obvious in the positive group after 24 hours in vitro incubation, but no mixed biofilm formation was observed in the negative group. In vivo studies showed that there was no significant difference in body mass between the two groups before operation and at 1, 3, and 7 days after operation ( P>0.05). Compared with the negative group, the levels of MCP-1 and IL-1ß at 1 day, and the levels of IL-1ß, MCP-1, IL-6, and TNF-α at 3 and 7 days in the positive group all increased, with significant differences ( P<0.05). Scanning electron microscope observation showed that a large amount of Staphylococcus epidermis and mixed biofilm structure were observed in the positive group, and a very small amount of bacteria was observed in the negative group with no mixed biofilm structure. HE staining of surrounding tissue showed inflammatory cell infiltration in both groups, and neutrophils and lymphocytes were more in the positive group than in the negative group. There was no significant difference in the number of bacterial infections in heart and liver between the two groups ( P>0.05). The number of bacterial infections in lung and kidney in the positive group was higher than that in negative group ( P<0.05). CONCLUSION: In the mixed infection of Staphylococcus epidermidis and Candida albicans, the ica operon may strengthen the structure of the biofilm and the spread of the biofilm in vivo, leading to increased inflammatory factors, and the bacteria are difficult to remove and persist.


Assuntos
Biofilmes , Staphylococcus epidermidis , Animais , Candida albicans , Inflamação , Óperon , Coelhos , Staphylococcus epidermidis/genética
17.
Ann Transl Med ; 9(1): 57, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33553350

RESUMO

BACKGROUND: Transforming growth factor-ß1 (TGF-ß1) has a wide range of biological functions. It antagonizes lymphocyte response, inhibits pro-inflammatory cytokines, and serves as a signal to turn off the immune response and inflammatory response. To study the correlation between TGF-ß1 and T helper (Th)1/Th2 cytokine levels in tree shrews, and to explore the effects of different levels of TGF-ß1 on central venous catheter (CVC)-centered Staphylococcus epidermidis biofilm formation in tree shrews. METHODS: Tree shrews were injected with different concentrations of TGF-ß1, and venous blood was drawn after 48 h to measure the levels of Th1 and Th2 cytokines. A CVC was placed into the femoral vein, and TGF-ß1 at different concentrations and PIA- (ATCC12228) and PIA+ (ATCC35984) standard strains of Staphylococcus epidermidis were injected into the tree shrews to establish a biomaterial-centered infection (BCI) model. After 72 h, the CVC was removed, and biofilm formation was detected using the API bacterial identification system, semi-quantitative biofilm formation assay, and scanning electron microscopy. RESULTS: In the groups treated with TGF-ß1 at different concentrations, the levels of Th1 cytokines interleukin-2 (IL-2), tumor necrosis factor (TNF), and interferon-γ (IFN-γ) were lower than those of normal group, while the levels of Th2 cytokines IL-6, IL-4 and IL-10 were higher than those of normal group. In the TGF-ß1 groups at different concentrations, the positive rate of Staphylococcus epidermidis ATCC35984 biofilm formation was higher than that in non-TGF-ß1 group, while there was no significant difference in the positive rate of Staphylococcus epidermidis ATCC12228 biofilm formation compared with that of the non-TGF-ß1 group. CONCLUSIONS: TGF-ß1 causes the imbalance of Th1/Th2 cytokines and Th1/Th2 shift in tree shrews, leading to Th1 cell-led decline in cellular immune function. TGF-ß1 promotes PIA+ Staphylococcus epidermidis biofilm formation in the tree shrew BCI model, but it has no significant influence on PIA-Staphylococcus epidermidis biofilm formation on the surface of CVCs.

18.
Ann Transl Med ; 8(17): 1076, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33145295

RESUMO

BACKGROUND: The cellular immunity of lung cancer patients is mainly the immune response of T cells, which plays an important role in tumour cell killing and immune surveillance. Transforming growth factor 1 (TGF-ß1) is secreted by tumour cells that can suppress the immune response and is an important group of immune down-regulation factors. Our study aims to investigate the effect of TGF-ß1 on the morphology and cellular immune function of A549 and peripheral blood mononuclear cells (PBMCs). METHODS: A549 cell line was cultured, PBMCs were cultured with different concentrations of TGF-ß1, and the morphology of A549 cells and PBMCs were seen. The levels of interleukin (IL)-2, IL-4, IL-6, IL-10, IFN-γ, and TNF and the numbers of CD3, CD4, CD8, CD4/CD8, and CD3 CD25 and CD4 CD25 in PBMCs were detected. RESULTS: During co-culture of A549 with PBMCs, TGF-ß1 can induced A549 showing epithelial-to-mesenchymal transition, enhanced its ability of migration and infiltration. Simultaneously, TGF-ß1 can depressing the growth and proliferation of PBMCs, inhibiting T-cell activation, and accelerating the PBMCs apoptosis. TGF-ß1 can inhibits A549 Th1 related-cytokines, enhance Th2 related-cytokines, cause the disorder of Th1/Th2, resulting in the Th1 cellular dominate immunity decline. CONCLUSIONS: TGF-ß1 may affect the secretion of related cytokines, hinder the activation of T lymphocytes, destroy the immune surveillance and killing effect of the body, and thus inhibit the cellular immunity.

19.
Onco Targets Ther ; 13: 10707-10719, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116647

RESUMO

PURPOSE: Recently, long noncoding RNAs (lncRNAs) have been identified as novel and potential therapeutic targets in various cancer types. Nonetheless, the levels and biological effects of lncRNAs in non-small cell lung cancer (NSCLC) remain largely unknown. In this study, we aimed to identify the effects of lncRNA-LINC01260 throughout the progression of NSCLC and explore the underlying mechanism. METHODS: Quantitative real-time PCR (qRT-PCR) and Western blot were performed to measure LINC01260, miR-562, and CYLD expression and protein levels. Luciferase reporter assay was employed to investigate the relationship between LINC01260 and miR-562, and miR-562 and CYLD, respectively. The viability and migration of cells were evaluated using CCK-8, colony formation, and transwell assays. The effects of LINC01260 were identified through tumorigenesis in vivo. ELISA was performed to detect the activity of NF-κB and p65 expression. RESULTS: In NSCLC tissues and cell lines, LINC01260 expression was downregulated, which corresponded to a lower survival rate of patients with NSCLC. Knockdown of LINC01260 accelerated the proliferation, colony formation, and migration of NSCLC cells. Moreover, downregulation of LINC01260 inhibited apoptosis of NSCLC cells by regulating the expression of Bcl-2 and Bax proteins in vitro. In vivo, the downregulation of LINC01260 promoted tumor growth. miR-562 was identified as the target gene of LINC01260, which was upregulated in NSCLC tumors. Furthermore, CYLD was identified as the target gene of miR-562. The effects of LINC01260 were exerted by regulating CYLD via sponging miR-562. ELISA confirmed that the upregulation of CYLD inhibited NF-κB activity; however, the co-transfection of sh-LINC01260 partly reversed the inhibition. Additionally, CYLD reduced p65 expression; however, downregulation of LINC01260 slightly increased the expression level. CONCLUSION: This study revealed a novel LINC01260/miR-562/CYLD/NF-κB pathway in the pathogenesis of NSCLC and suggested a potential therapeutic target for NSCLC.

20.
Front Immunol ; 11: 783, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508809

RESUMO

Immune checkpoint inhibitors (ICIs) are starting to transform the treatment for patients with advanced cancer. The extensive application of these antibodies for various cancer obtains exciting anti-tumor immune response by activating T cells. Although the encouraging clinical benefit in patients receiving these immunostimulatory agents are observed, numbers of patients still derive limited response or even none for reasons unknown, sometimes at the cost of adverse reactions. Myeloid-derived suppressor cells (MDSCs) is a heterogeneous immature population of myeloid cells partly influencing the efficacy of immunotherapies. These cells not only directly suppress T cell but mediate a potently immunosuppressive network within tumor microenvironment to attenuate the anti-tumor response. The crosstalk between MDSCs and immune cells/non-immune cells generates several positive feedbacks to negatively modulate the tumor microenvironment. As such, the recruitment of immunosuppressive cells, upregulation of immune checkpoints, angiogenesis and hypoxia are induced and contributing to the acquired resistance to ICIs. Targeting MDSCs could be a potential therapy to overcome the limitation. In this review, we focus on the role of MDSCs in resistance to ICIs and summarize the therapeutic strategies targeting them to enhance ICIs efficiency in cancer patients.


Assuntos
Quimioterapia Combinada/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Animais , Humanos , Imunoterapia , Camundongos , Células Supressoras Mieloides/fisiologia , Neoplasias/terapia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA